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Abstract—Image translation for style conversion has been an
active area of research in deep learning finding a wide variety
of applications from medical imaging to speech processing. It
aims to find an apt mapping from one signal domain to another,
by learning the underlying distributions or by conditioning on
given cues like text. Generative Adversarial Networks and their
variants are the most popular architecture for this purpose,
with CycleGAN being the most simple and intuitive approach.
However, GANs are generally much harder to train with unstable
convergence guarantee. They also require large computational
resources and more representative databases in both domains.
In this project, we implement the cycleGAN and show its
effectiveness in learning the conversion along with the accom-
panying challenges. In an attempt to overcome them, the recent
DiffusionCLIP model is modified and finetuned to fit the dataset.
The models are trained on Wikiarts-Impressionism dataset for
paintings with CelebA and Intel Image Classification datasets for
real-world photos. We achieve FID score of 5.941 for CycleGANs
and 5.535 with DiffusionCLIP, hence proving the superiority of
diffusion-based generative models in learning the transformation
while being practically efficient.

Index Terms—Image translation, CycleGAN, Diffusion models,
Image processing, Deep learning, Generative modeling

I. INTRODUCTION

Image translation is a subset of deep learning problems
where the models are trained to learn mapping from one image
domain to another. It finds applications in a wide variety of
areas including but not limited to art generation [1], [2], image
inpainting [3], medical imaging modality conversion (MRI T1
to T2 contrast or CT images) [4] [5], and emotion conversion
[6]. This can be solved in a supervised discriminative manner
when provided with paired images from source and target
domains. However, it is not practically possible to have paired
data in all applications. Suppose the subjects in imaging
modality conversion problem undergo both CT and MRI under
controlled conditions, the images from two scanners need to
be fused to simulate simultaneous acquisition without more
expensive technology [7]. On the other hand, consider the
experiment of generating Monet-style impressionist art from
real photos. As demonstrated in the figure 1, the database
of target domain here only contains the experiences of the
19th century artists. Monet could never have captured the sky-
scrappers or the fashion accessories of the present day world.
Hence, it is necessary to employ generative models to learn the
mapping between the underlying distributions of the domains.

In this project, the problem of art generation from real-world
photos is tackled using deep generative models. This can be
broadly conceptualized as building a parameterized model to
extract relevant features from the source domain (X) and then
manipulating them accordingly to map to the target domain
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Fig. 1: Sample impressionist paintings by Claude Monet

(Y). It can be modelled as an informed encoder-decoder
architecture. Generative Adversarial Networks (GANs) are one
such state-of-art models for image generation. Meanwhile,
the mapped image must still contain features like edges and
shapes from original photo while containing distinguishable
features of the art style like brush strokes. This can be
achieved by ensuring cycle consistency in the architecture as
first introduced by Zhu et al in 2017 [8]. CycleGANs consist
of two generators with paired discriminators to learn the X to
Y as well as Y to X mappings. While CycleGAN is simple
and intuitive, training the large network with images from
both domains can be complicated. Secondly, they also lack in
preserving the highly variable image contents. In an alternative
approach, we explore art generation by neural style transfer
which informs the model with a representation guided by
textual cues. This is called zero-shot image generation which
has been very successful with Contrastive Language-Image
Pretraining (CLIP) [9]. Diffusion models overcome the second
challenge by designing a paired forward-reverse process using
a parameterized Markov chain [10].

This report is structured to include the theory of two models:



CycleGAN and DiffusionCLIP and present our findings on
implementing the two models for generating impressionist art
images from real world photos of landscapes, cityscapes, por-
traits and miscellaneous objects. We compare the generative
ability of models visually and quantitatively and report on their
computational efficiency, robustness, and generalizability.

II. RELATED WORK

Generative Adversarial Networks are widely popular gen-
erative models that have shown state-of-art performance in
several tasks like image generation [11], signal conversion [6],
and representation learning for dimensionality reduction [12].
Adversarial loss sets a coupled generative and discriminative
model in a two-player game to improve the quality of perfor-
mance without the need for maximum likelihood estimations.
Image translation has been extensively studied with traditional
and deep learning based methods. In the paired image problem,
a non-parametric approach is employed in Image Analogies
method to build a texture model [13].

More recently, CNNs have outperformed such models by
training the model to learn the mapping in a supervised fashion
[14] which are shown to perform better with perceptual loss
[15]. GAN-based image translation such as Pix2Pix learn more
acceptable mapping than a vanilla autoencoder [16] for art
generation, sketch to photo conversion [2], or from semantic
attributes [17]. Other variations include weight sharing, cou-
pled VAE-GAN, predefined metric and feature space guided
training. CycleGANs build on this idea for unpaired image
tasks by combining two generators to learn mappings to and
from both domains. [?].

Diffusion probabilistic models are more recent score-based
generative models that make use of parameterized Markov
chains to infer forward-reverse diffusion process of image
generation from noise input [18]. Each step in the process
i s a modelled as a Gaussian transition. ALternatively, it can
be modified to be a non-markovian process with an alternate
sampling process [19]. DDIM makes the whole process faster
by setting the noise to zero which makes the sampling process
deterministic and inferred through full inversion [20]. CLIP is
a pretrained text encoder decoder architecture with losses at
multiple resolutions to improve overall performance. CLIP-
guided diffusion models that build on U-Net like architecture
have shown promising results neural style transfer [10]

III. METHODOLOGY

A. CycleGAN

1) Theory and motivation: We aim to develop a generative
adversarial network that can learn to translate between the
domains of renaissance styled paintings and realistic photo-
graphic images. For all the experiments we setup, we assume
that there is an underlying relationship between these two
domains where each image in one domain is assumed to have
different rendering in the other domain. Hence for every set
of images belonging to one particular domain X and their Y

corresponding rendering in the other domain, we seek to train
a generative mapping such that

G : X → Y

for the output
ŷ = G(x);x ∈ X

Assuming the mapping to be stochastic, the objective that
we train on can induce an output distribution over ŷ to match
the empirical distribution. The main assumption being that the
mapping that we generate will translate from domain X to a
domain which is identically distributed to the target domain
Y. While the above assumption is justified, it is not certain that
only a single mapping from the two domains will be generated
as there are likely infinite mappings from domain X to Y.

Fig. 2: GAN network with the two mapping functions [21]

Fig. 3: Forward cycle consistency

Fig. 4: Backward cycle consistency

While mode collapse is a common problem when tuning
GANs, where the generator fails to produce a new set of
images each time, this makes the use of GANs for style
transfer more difficult as the adversarial objective cannot be
successfully optimized in isolation.
Hence, the need to develop a ”cycle consistent” structure was
employed by [16]. This concept ensured that translations from
one domain to another and back would yield consistent results.
This means that if we have a mapping F from one domain to
another and G back from the second to first domain, then F
and G should be bijections in nature.



In order to maintain this mapping, we have to modify our
optimization strategy to accommodate for the bijection map-
ping by modifying the loss function. This can be done by
designing a cyclically consistent loss function that enables the
training of mappings in both directions i.e. F (G(x)) ≈ x
and G(F (y)) ≈ y. By combining this with the adversarial
loss function of the GAN, we can complete our design of
the transformation mapping objective between image-to-image
domains.
Thus the problem that we propose to solve is an unpaired
Image-to-image translation problem where the goal is to build
a mapping between two domains. Our work is inspired by
previous work in the field of unpaired image-to-image trans-
lation and neural style transfer. The idea of image-to-image
translation was first proposed by Hertzmann et.al [22] using a
non-paramteric model on a single pair of images. Rosales et.al
[23] had also proposed a bayesian framework for a prior based
patch-based Markov random field computed from a source
image and a likelihood term sourced from several style images.
In recent years, Liu et.al [24] used a weight sharing strategy
to build a representational mapping between two domains
which was then extended to using variational auto-encoders
and GANs. The idea of using a cycle consistent loss function
was also proposed by Zhou et. al [25] using CNNs. Finally we
also derive inspiration from the works in neural style transfer
but differ in the concept of learning mapping between two
different image domains rather than just two different image
pairs.

2) Network architecture:: We propose a GAN network
architecture based on the work of Johnson et.al [26]. In
unpaired image to image translation, we have no pre-defined
pathway to learn the necessary mapping to train our network.
Hence we need to allow the generator network to map an
input image from domain A to the target domain B but by
ensuring that we can map the generated output image back to
the original image domain. This allows us to essentially learn
the mapping between the input image and the generated image.

Fig. 5: Complete cycleGAN model. Top: Forward cycle Bot-
tom: Reverse cycle

Thus, each discriminator will receive two inputs, one orig-
inal image and the other generated image from the generator.
The discriminator is tasked to distinguish between the two
images and identify if the image is fake or not thus defying the
generator. In this process, as the generator learns, it will learn
to generate more realistic images that are as close looking to
the original images. At the Nash equilibrium, the distribution
of the generator and the discriminator becomes the same.
In detail, the GAN generator architecture can be divided into:

• Encoder
• Transformer
• Decoder

together, there are three convolutional layers, 9 residual blocks,
two fractionally strided convolutions with stride 1/2 and lastly,
a convolution layer to map to RGB. Instance normalization is
used for regularization.

Fig. 6: Generator architecture [27]

Fig. 7: Intermediate Residual blocks used [27]

Similarly, the discriminator network consists of a PatchGAN
model that has a field of 70 × 70. Such an approach was



employed to reduce the parameter size compared to a full size
discriminator.

Fig. 8: Discriminator architecture [27]

Also, in order to stabilize the learning, similar to the original
cycleGAN paper, we have replaced the negative log-likelihood
by a least-square loss. Adam was used as the optimizer and
a batch size of 5 was used. The networks were trained from
scratch and using a pretrained network later to compare the
performance.

3) Loss function definition:: To learn the mapping from
domain X to domain Y, we denote the data distribution as
x ∼ pdata(x) and y ∼ pdata(y)
Further, as proposed in the original cycleGAN paper, we
use two additional adversarial discriminators. Thus, the final
objective contains a combination of two losses, adversarial
loss and cycle consistency loss. In detail, each is defined as:
Adversarial loss: The native GAN’s adversarial loss is applied
to both mapping functions. For example, for the mapping for
the generator, G : X → Y and it’s discriminator DY , the
objective is defined as:

LGAN (G,DY , X, Y ) = Ey∼pdata (y) [logDY (y)]

+ Ex∼pdata (x) [log (1−DY (G(x))]

where the generator G tries to generate images that look
similar to the target Y domain and the discriminator DY does
the opposite. The generator aims to minimize this loss while
the discriminator tries to maximize this.

min
G

max
DY

LGAN (G,DY , X, Y )

Cycle Consistency loss: Adversarial loss alone cannot guaran-
tee bijection mapping between the input and target domains.
While adversarial training can usually produce outputs that
match the target distribution, this requires that the mapping
are stochastic in nature. If given a large enough compute, any
of the learnt mappings can induce an output distribution that
matches the target distribution, and a network can map the
same set of input photos to any random permutation of images
in the target domain. This gives rise to the formulation of the
cycle consistency loss given by:

Lcyc (G,F ) = Ex∼pdata (x) [∥F (G(x))− x∥1]
+ Ey∼pdata (y) [∥G(F (y))− y∥1]

Hence the full objective to optimize now becomes:

L (G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λLcyc(G,F )

with the focus to solve the following optimization -

G∗, F ∗ = argmin
G,F

max
Dx,DY

L (G,F,DX , DY )

B. DiffusionCLIP

1) Theory and motivation: GAN inversion methods have
recently been combined with Contrastive Language-Picture
Pretraining (CLIP), allowing zero-shot image alteration driven
by text instructions. However, due to the restricted GAN
inversion capabilities, its application to a variety of real-
world images remains tough [28]. These methods frequently
struggle to reconstruct photos with unique positions, view-
points, and highly changeable contents when compared to the
training data, modify object identity, or produce undesired
image artifacts. To address these issues and enable accurate
alteration of real images, DiffusionCLIP [29], a text-driven
image manipulation method based on diffusion models were
recently developed.

Diffusion probabilistic models are a class of latent variable
models that is inspired by nonequilibrium thermodynamics
for high-quality image synthesis metho. It brings a new class
of generative models called Diffusion models [30]. Diffusion
models have been shown to achieve image sample quality
superior to the current state-of-the-art generative models. This
is achieved on unconditional image synthesis by finding a
better architecture through a series of ablations.

We explore a CLIP-guided robust image alteration approach
based on diffusion models. Through forward diffusion, an
input image is first converted to latent noises. If the score
function for the reverse diffusion is kept the same as the
score function for the forward diffusion, the latent noises
can be inverted nearly precisely to the original picture using
DDIM. DiffusionCLIP’s main idea is to use a CLIP loss to
fine-tune the score function in the reverse diffusion process,
which controls the properties of the created image based on the
text prompts. DiffusionCLIP can thus successfully manipulate
images in both the trained and unseen domains and can even
translate an image from one domain to another.

The forward process consists of a Markov chain where noise
is gradually added to the data when sequentially sampling the
latent variables xt for t = 1, , T [30].

Each step in the forward process is a Gaussian transition:

q(xt|xt1) := N( 2
√
1− βtxt − 1, βtI)

where {βt}Tt=0 are fixed or learned variance schedule. The
resulting xt can be shown as:

xt =
√
αtx0 + (1− αt)ω

where ω is a normal distribution and αt :=
∏
(1 − βs).

The reverse process q(xt − 1|xt) is also parameterized using
another Gaussian transition



pθ(xt1|xt) := N(xt − 1;µθ(xt, t), σθ(xt, t)I)

µθ(xt, t) can be decomposed into the linear combination of
xt and a noise approximation model ϵθ(xt, t), which can be
learned by optimizing:

min
θ

Ex0 q(x0),ω N(0,I),t||ω − ϵθ(xt, t)||22

After training ϵθ(xt, t), the data is sampled using reverse
diffusion:

xt =
1√

1− βt
(xt −

βt√
1− αt

ϵθ(xt, t)) + σtz

where z is sampled from a normal distribution. The DDIM
sampling [31] process where noise is set to 0 can be modeled
as a deterministic process, enabling full inversion of the latent
variables into the original images. This can be considered as
an Euler method to solve an ODE:

√
1

αt−1
xt−1 −

√
1

αt
xt = (

√
1

αt−1 − 1
−
√

1

αt − 1
)ϵθ(xt, t)

Fig. 9: The input image is first converted to the latent via
diffusion models. Then, guided by directional CLIP loss, the
diffusion model is fine-tuned

2) Loss definition - CLIP Loss: CLIP [32] was developed as
a way to acquire visual concepts quickly with natural language
guidance. CLIP uses a text encoder and an image encoder to
identify which texts correspond to which photos in the dataset.
As a result, for text-driven image alteration, a pretrained CLIP
model was used. Two distinct losses have been proposed to
effectively extract knowledge from CLIP: a global target loss
and a local directional loss. The global CLIP loss aims to
reduce the cosine distance between the generated image and
a given target text in the CLIP space as follows:

Lglobal(xgen, ytar) = DCLIP (xgen, ytar)

ytar is a target’s text description, xgen is the generated
picture, and DCLIP returns the cosine distance between their
encoded vectors in CLIP space. Local directional loss, on the
other hand, is intended to address the problems associated with

global CLIP loss, such as poor variety and vulnerability to
adversarial attacks. In the CLIP space, the local directional
CLIP loss causes the direction between the embeddings of
the reference and generated pictures to align [33] with the
direction between the embeddings of a pair of reference and
target as follows:

Ldirection(xgen, ytar;xref , yref ) = 1− < ∆I,∆T >

||∆I||||∆T ||
∆T = ET (ytar)− ET (yref );∆I = EI(xgen)− EI(xref )

CLIP’s image and text encoders are EI and ET , respectively,
while the source domain text and image are yref and
xref . The altered images guided by the directional CLIP
loss are known to be resistant to mode-collapse difficulties
because separate images should be generated by aligning the
direction of the image representations with the direction of
the reference text and the target text. It’s also more resistant
to adversarial attempts because the perturbation will vary
based on the photos.

3) Model architecture and training: Figure 10 depicts the
overall flow of the proposed DiffusionCLIP for image trans-
lation. It follows a U-Net architecture with multiple attention
layers in between. Using a pretrained diffusion model, the in-
put image is first transformed to the latent. The diffusion model
at the reverse process is then fine-tuned to generate samples
driven by the target text, guided by the CLIP loss. DDIM is
used to create deterministic forward-reverse processes.

Fig. 10: The shared U-Net architecture across t of the diffusion
model that generates 256 × 256 images. The model receives
xt and t as inputs and outputs ϵθ(xt, t).1001[29]

The CLIP loss is a crucial component in the optimization
process. Because of the appealing qualities indicated ,we use
directional CLIP loss as a guidance among the two types
of CLIP losses discussed above [29]. Directional CLIP loss
requires a reference text and a target text during training
for the text prompt. For example, we may use ’photo’ as a
reference text and ’monet painting’ as a target text to change
the expression of a given photo into an impressionist painting.

The majority of existing diffusion models take xt and t as
network inputs. In the CelebA-HQ, DDPM models that have
been pre-trained on 256 x 256 pictures which uses the U-
Net architecture, which is based on Wide- ResNet. The model



is made up of four parts: an encoder, a middle component,
a decoder, and a time embedding part. The 8 x 8 feature is
created in the encoder part from the 256 x 256 input picture
using 1 input convolution and 5 Res blocks. One Res block
is made up of two convolutional blocks: Group normalization
and Swish activation, with a residual link as shown in Fig. [].
Self-attention blocks are added to the Res block at the 16 x
16 resolution. Three Res blocks make up the middle section,
and the second block includes a self-attention block. After the
middle section of the decoder, the feature produces an output
with the same resolution as the input through 5 Res blocks and
1 output convolution with skip connections from the features.
After the Transformer sinusoidal encoding, the diffusion time
t is embedded into each Res block in the time embedding
section.

IV. RESULTS

A. Dataset information

We form out training image classes using the following:
• Source photo domain: We combine landscape images

from Intel Image Classification dataset [34] downloaded
from Kaggle and human portrait images from CelebA
dataset [35] with a total of 5000 images.

• Target art domain: The Wikipaintings dataset [36], which
contains images from the WikiArt website together with
their style names. In total, this dataset contains 80,000
images from 25 styles, out of which we only use the
Impressionism subset with 2000 images.

We reiterate that we only have unpaired images as shown in the
right image in figure 11 Test set is generated by choosing 100
unseen real world photos from the same dataset. All images
are resized to (512, 512) with RGB channels, normalized to
the range of (-1,1), and injected with a Gaussian noise of mean
0 and standard deviation of 0.05.

Fig. 11: Paired and unpaired images [21]

B. CycleGAN

Result: We experiment with several hyper-parameters such
as regularization (dropout, normalization), size of generator
and discriminator networks and try to build a stable GAN
model that provides a strong mapping between the two image

domains. The final results are shown from a model trained
using Adam optimizer with 0.0002 and batch size of 2.
We suppose the problem to be an unpaired image-to-image
problem thus allowing us to demonstrate whether our model
would work in the absence of paired data. The curves of
the loss function during training are as shown in figure 15.
It is typical of CycleGANs to have spiky training curves as
observed here.

(a) (b)

(c) (d)

Fig. 13: Reconstructed images (right) compared to original
source images (left) using the GAN model. Outputs are good
for simpler images but need multiple passes into the trained
model for complex images

C. DiffusionCLIP

The process focuses on zero shot translation from the
image domain to the impressioninst art domain. To precompute
latents and fine-tune the Diffusion models, about 30+ images
in the source domain are used. For the process, the model
requires a VRAM of 24 GB+ is required for 256x256 images
and this can be brought down to 6GB of VRAM for smaller
image sizes. The model was trained on 50 images from the
celebA-HQ dataset for 5 iterations with a clip learning rate of
8e-6 and tested on custom face images.

Fig. 14: Diffusion: Variation over time



(a) Generator A loss curve (b) Generator B loss curve (c) Discriminator A loss curve

(d) Discriminator B loss curve (e) Loss of cycleGAN A (f) Loss of cycleGAN B

Fig. 15: Diffusion: Training Loss Curve

Fig. 16: Impressionist Images generated using diffusion model
(lower) compared to original source images (upper)

D. Comparison

Due to the lack of paired images, it is not possible to use
the general metrics used for image comparison such as Peak
Signal to Noise Ratio (PSNR) and Structural Similarity Index
Measure (SSIM). Alternatively, Fréchet inception distance
(FID) score was first introduced by Heusal et al in 2017 [37]
to compare the distribution mappings learnt by the GANs. FID
score is given by

FID = ||µ− µw||22 + tr(Σ + Σw − 2(Σ1/2ΣwΣ
1/2)1/2)

where µ, Σ and µw, Σw are mean and covariances of the
two model generated and real world images respectively. The
parameters are empirically computed on the activations of final
layer of the Inception-v3 model [38]. We use the function in
predefined library Pytorch-fid to implement the computation.
Specifically we use dimensionality of 64 (first max pooling
features) for calculating FID score. We use this score to
compare the generated art from 100 test images with a subset
of our dataset in impressionism. [39]. If identical, FID score
would be zero. Hence, lower the FID score, better is the quality
of generated images.

Model FID score
CycleGAN 5.941

DiffusionCLIP 5.535

TABLE I: FID scores of two models on 100 test images of
landscapes and portraits

As reported in the table I, cycleGAN and DiffusionCLIP
models generate comparable FID scores, although the latter
resulted in visually more appeasing images. We suppose this
is because of the Gaussian perturbations introduced in the
diffusion process, while the CycleGAN still entails good
sharp features which is unlikely to be found in impressionist
paintings.



V. DISCUSSION

A. Strengths

With the combined experiments on transforming real world
images into art using CycleGAN and CLIP-guided diffusion
models, we have showed the effectiveness of deep generative
models in learning the mapping from one distribution to an-
other. CycleGAN does this by learning the parameters for both
forward and backward processes using two CNN bottleneck
autoencoders paired with discriminators. The identity loss
and cycle loss ensure that the mapped images belong to the
target distribution while still withholding the characteristic
features of the original image. This process is simple and
intuitive, hence easily implementable even for a beginner. As
shown in the results, the generated art images contain the
necessary features. The use of instance normalization over
batch normalization is a better choice in image translation
tasks as it is more important to maintain the same contrast
information in the mapped images, more than maintain the
same intensities.

On the other hand, CLIP-guided diffusion model not only
resulted in more acceptable art images with distinct impres-
sionist features, they were also trained in a more stable fash-
ion. The physics-based diffusion process intuits the forward-
backward process with parameterized Gaussian transition.
This whole tractable process was much easier to train until
convergence. This model also generalized very well outside
the training dataset unlike GAN models. The unseen images
looked more like paintings irrespective of its structural and
textural complexities.

Hence, we compared the state-of-art generative models for
the task of image translation. This can be easily extended to
other applications like medical imaging modality conversion
using fine-tuning on the required dataset. Generative models
like this perform better than overly parameterized discrimina-
tive models for two reasons: One, the losses are defined to
learn the underlying distribution and hence does not need pair
wise information. Two, they can easily outperform discrimi-
native models on unseen images of the same distribution for
same reasons. Hence, they are more practical and efficient.

B. Weaknesses

Generative models are known to be prone to unstable train-
ing process. Particularly, our CycleGAN loss curve was spiky
with minute reduce in loss, hence, we suppose that it needs at
least 10 times the current training steps i.e., about 50000 itera-
tions taking several days of training which is computationally
impossible given the resources at our disposal. This resulted
in teh CycleGAN to learn an intermediate mapping between
domains. As a solution, we passed the output of the model
iteratively back into the model make it more art-like as shown
in the figure, but this is not the best strategy in long term.
GANs are trained with images from both source and target
domain in the cyclic fashion which requires a lot of data to
enure the representation from all possible cases. This limits
the model to learn within the available data and hence can not

generalize to unseen images. As seen in the results, GANs fail
in transforming images with higher complexities as it is not
very well represented in the target domain.

Diffusion model overcomes many of the challenges faced
by CycleGAN, however, presents a new set of issues given its
recency within the research area. The tractable training process
is faster but still requires a top-end GPU to be trained. It
requires about 2 min to generate an art image from the input.

Both these models however need to be trained separately
for each genre of art, for example, three separate models
for transforming photos to impressionism, pointillism, and
cubism. This makes the strategy computationally inefficient
in a resource-constrained setting. A possible solution would
be to learn multi-way transfers using StarGANs or learning
with conditional losses in diffusion model using latent repre-
sentations. This would require a huge corpus of data from all
genre, hence, necessitating a better planning.

VI. CONCLUSION

In this project, we implemented two state-of-art generative
models, namely CycleGAN and DiffusionCLIP for the task of
image translation from photos to impressionist art. We estab-
lished the superiority of diffusion-based models in learning a
better transformation without need for large databases in both
image domains. They are easy to train to convergence but
necessitate long hours of training. Meanwhile, cycleGANs are
entitled to more unstable training learning only an intermediate
transformation.

In the future, this work can be extended to learn multi-way
neural style transfers. It also requires better usage of resources
to facilitate faster training. These models can thus be extended
to more practical scenarios of medical imaging and emotion
conversion.
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